Selective activation of regulatory T cells (Tregs) by BT-061: Clinical data from a completed Phase IIa trial in rheumatoid arthritis (RA) and design of a multi-centre, double-blind, randomised, placebo-controlled, Phase IIb dose-finding trial

Hendrik Schulze-Koops1, Thorsten Holzkämper2, Sukanya Ragavan3, Christina Trollmo2, Vivianne Malmström1, Christian Becker4, Helmut Jonuleit4, Vibeke Strand5, Silke Aigner5, Niklas Czeloth2, Benjamin Dälken2, Andre Engling2, Helga Koch2, Gabriele Niemann2, Frank Osterroth5, Christoph Uherek2, Andrea Wartenberg-Demand6, Olga Ershova6, Tatiana Sotnikova7, Alexander Orlov-Morozov8, Gianfranco Ferraccioli9

1Klinikum der Ludwig-Maximilians-Universität München, Medizinische Poliklinik, Rheumaeinheit, München, Germany; 2Biotest AG, Biotherapeutics, Dreieich, Germany; 3Karolinska Institute, Stockholm, Sweden; 4Johannes-Gutenberg University, Mainz, Germany; 5Stanford University, Portola Valley, USA; 6Clinical Hospital for Emergency Medical Care, Yaroslavl, Russia; 7Botkin Clinical Hospital, Moscow, Russia; 8City Hospital Nr. 23 n.a. Medsantrud, Moscow, Russia; 9Università Cattolica del Sacro Cuore, Divisione di Reumatologia, Roma, Italy.

Disclosure

This study was designed and sponsored by Biotest AG.

Disclaimer

While all reasonable care has been taken to ensure the information contained in this presentation is accurate and up-to-date, Biotest makes no warranties, express or implied, that the information and forward looking statements contained in this presentation are free from error or omission. Scientific statements - in particular statements related to ongoing clinical trials - are by nature subject to elements of uncertainty that could result in deviation of actual developments from expected developments.
Selective activation of regulatory T cells (Tregs) by BT-061: Clinical data from a completed Phase Ia trial in rheumatoid arthritis (RA) and design of a multi-centre, double-blind, randomised, placebo-controlled, Phase IIb dose-finding trial

Abstract

Background

Tregs are essential for maintaining normal immune homeostasis. In patients with autoimmune diseases reduced numbers or functional impairment of Tregs has been observed. BT-061, a humanized agonistic monoclonal antibody, binds to a unique epitope of CD4, induces Treg-specific signalling events and leads to their functional activation. Pre-clinical data using isolated Tregs and RA synovial fluid indicate that BT-061 leads to suppression of CD4 and CD8 T effector cell proliferation, reduction of the expression of pro-inflammatory cytokines, and increase in the production of the anti-inflammatory cytokine TGF-beta. BT-061 is currently under clinical investigation in rheumatoid arthritis and psoriasis.

Method

A Phase Ia trial in 96 RA patients non-responsive to DMMARDs evaluated doses of 1.25 mg to 100 mg BT-061 SC and 0.5 mg to 25 mg BT-061 IV versus placebo.

Results

The trial demonstrated that the best response was achieved with 50 mg BT-061 SC as monotherapy. This dose of BT-061 resulted in ACR20/50/70 responses of 67%/37%/17%, versus 14%/14%/0% in patients in the placebo group after 6 weeks of therapy. Rapid improvements in tender (TJC) and swollen (SJC) joint counts were observed (TJC: mean reduction of 56.4% at Week 7, SJC: mean reduction of 62.5% at Week 7). Therapy with BT-061 was generally well tolerated.

Conclusion

Based on these results, a placebo-controlled, Phase Ib trial, involving approximately 35 clinical centres across Europe has been initiated to evaluate clinical use of BT-061 in combination with methotrexate (MTX) in RA patients with an inadequate response to MTX. Placebo or 25, 50 or 75 mg of BT-061 SC will be given once-weekly, for 12 weeks. Initially 100 patients (25 per group) will be enrolled. After an interim analysis to identify the best dose of BT-061, an additional 76 patients will be randomized to this dose of BT-061 or placebo (38 per arm). The primary endpoint will be ACR20 response at weeks 13, with secondary endpoints including ACR50 and ACR70 responses. Safety and efficacy of BT-061 will be monitored over the entire course of the trial.

Backgound

Tregs mediate and balance the immune system. Once activated, they suppress T cells in an antigen-independent manner (Figure 3A). In patients with autoimmune diseases, reduced numbers or functional impairment of Tregs results in loss of this finely-tuned mechanism.

Methods

- **Biotest**: Study 96 was a randomised, placebo-controlled, Phase Ia trial
- **96 patients with RA who had a history of DMARD failure**
- **BT-061 SC (1.25–100 mg) or IV (0.5–25 mg) per group for matching placebo (n=2 per group) weekly for 6 weeks**
- **Primary end point: ACR 20 response after 6 weeks of treatment**
- **Secondary endpoints include ACR 50/70, DAS28 and EULAR criteria, safety, cytokine assessment, lymphocyte phenotyping**

Results

The most efficient route of administration for BT-061 was found to be SC. Based on ACR responses (Figure 2) and improvements in tender (TJC) and swollen (SJC) joint counts, the most efficacious dose of BT-061 was identified to be 50 mg.

At the 50 mg dose, BT-061 induced rapid improvements in TJC and SJC, which in some cases was maintained beyond the closing period (Figure 3).

Conclusion

- **This is the first study of a CD4 antibody given via the SC route for the treatment of RA**
- **In this trial, in patients with a history of DMARD failure, clinical effects of BT-061 given as monotherapy indicated 50 mg SC as the likely optimal dose**
- **Induced activation of Tregs with BT-061 is a promising therapeutic strategy for the management of RA**

Study 979: Phase IIb Dose-Finding Study

Based on these findings a Phase IIb trial, Biotest Study 979, has been initiated (Figure 4).

Safety

No depletion of CD4 cells was observed at any dose level. BT-061 was generally well tolerated; serious AEs were reported in 2 patients of 72 treated with BT-061 (both received 6.25 mg SC), and in 1 of 24 patients who received placebo (the patient was in the IV group). There were no serious infections and no deaths reported in the study.

Study Design

- **Enrolment into Study 979 commenced in December 2010** (Co-ordinating investigator, Gianfranco Ferraccioli, Rome).
- **Anti-TNF therapy** has been initiated (Figure 4).

Table 1: Adverse events (SC doses)

<table>
<thead>
<tr>
<th>Dose (mg)</th>
<th>1.25 mg</th>
<th>6.25 mg</th>
<th>12.5 mg</th>
<th>25 mg</th>
<th>50 mg</th>
<th>75 mg</th>
<th>100 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BT-061</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Disclosure

The study was designed and sponsored by Biotest AG.

Reference